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Abstract. We simulated the king spin-glass model on a random lattice with a finite (average) 
coordination number and also on the Bethe lattice with various different boundary condi- 
tions. In particular, we calculated the overlap function P ( q )  for two independent samples. 
For the random lattice, the results are consistent with a spin-glass transition above which 
P ( q )  converges to a Dirac S function for large N (number of sites) and below which P ( q )  
has in addition a long tail similar to previous results obtained for the infinite-range model. 
For the Bethe lattice, we obtain results in the interior by discarding the two outer shells 
of the Cayley tree when calculating the thermal averages. For fixed (uncorrelated) boundary 
conditions, P ( q )  seems to converge to a S function even below the spin-glass transition 
whereas on a ‘closed’ lattice (correlated boundary conditions) P ( q )  has a long tail similar 
to its behaviour in the random-lattice case. 

1. Introduction 

The theory of randomly frustrated systems such as the spin glass has been fully 
understood only at the mean-field level in which the interaction range is infinite. The 
Parisi solution [ l ]  leads to the many-pure-state picture in the spin-glass phase. 
However, there has been much controversy over the existence of many pure states in 
the short-range case [2,3]. The long-range Sherrington-Kirkpatrick ( S K )  model is 
‘universal’ in the sense that it just depends on the first two cumulants of the bond 
distribution [4]. But the short-range model depends on the type of bond distribution, 
i.e. it depends on all the cumulants of the bond distribution. To tackle the short-range 
model, one might think of using a loop expansion. The first step is the zero-loop or 
tree approximation which is known to be unstable without replica symmetry breaking 
(RSB) for a Gaussian bond distribution. Even at this level of approximation one has 
to introduce a sequence of order parameters q m ,  qnp,  q a p y , .  . . , etc for non-Gaussian 
bond distribution (for Gaussian, qa and qmp are sufficient) and there is no known 
scheme of introducing RSB for these order parameters. 

In this paper, we first consider the Viana-Bray [5] model of the random lattice. 
This lattice consists of N sites and a bond connecting two sites is placed with a 
probability p =  c / N  with c = O ( l )  with respect to N. Thus the lattice has a finite 
coordination number and is locally isomorphic to a tree since the probability of finding 
a loop of small size is 0 ( 1 / N ) ,  and hence the tree approximation is exact [6] up to 
0(1/N).  Viana and Bray, using a perturbative expansion, showed that the replica 
symmetric solution is unstable just below the spin-glass transition. MCzard and Parisi 
[6] and Kanter and Sompolinksy [7] found a replica symmetric solution to the model 
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at T=O using the effective field method. This solution was subsequently shown [8] 
to be unstable to RSB (and also to the inclusion of a continuous part), but an  explicit 
solution which breaks replica symmetry has not yet been found due to the complexity 
of the problem (infinite number of order parameters qap,  q u p y , .  . . , etc). We simulate 
and study the properties of the spin glass on this lattice. The probability distribution 
of the overlap function P ( q )  is computed. The results will provide some valuable 
information on the nature of the RSB and the structure of the phase space. 

The spin-glass model on the Bethe lattice has been investigated extensively in recent 
years [9-131. The Bethe lattice has a finite coordination number and thus may be a 
better starting point for the understanding of the short-ranged spin glass than the 
infinite-range model. Surprisingly though, this model was found to possess many 
similar properties to the infinite-range model. The Bethe lattice has some subtleties 
in the sense that the properties of the solutions r,iay depend on the choice of boundary 
conditions. Distinctions have been made in the literature between ‘uncorrelated’ and 
‘correlated’ boundary conditions. The model with correlated boundary conditions ha5 
been shown recently to undergo RSB in the spin-glass phase close to and below the 
spin-glass transitions [ 131. This suggests the existence of many coexisting thermo- 
dynamic states as in the SK model. On the other hand, for uncorrelated boundary 
conditions, a solution similar to the original SK model has been obtained [12] (no 
RSB). It is very probable, and  is suggested by the results of this work, that the Bethe 
lattice with correlated boundary conditions is very similar to the random graph with 
fixed connectivity which can be viewed as a ‘closed’ Bethe lattice since, as mentioned 
before, small loops are rare ( O ( l / N ) ) .  In this context we mention that it is easy to 
generate a random graph with fixed connectivity [14] although in this paper we will 
consider the closely related random graph with average finite connectivity Ci la Viana 
and Bray. In this paper, we will use Monte Carlo simulations to investigate the effects 
of different boundary conditions on the spin-glass solution. 

In addition to the theoretical interest in the short-range spin-glass problem, due to 
the close relationship between spin-glass systems and complex optimisation problems 
[15,16], this type of model is of much practical importance for the problem of 
bipartitioning of a graph with finite connectivity [16]. A better understanding of the 
nature of the phase space will give valuable information needed for computer optimisa- 
tion problems. 

2. Theory 

2.1. The random-lattice spin glass 

We consider the Ising spin-glass system described by the Hamiltonian 

I 

where S, = *l ,  .TI, is the random interaction between a pair of spins ( i , j )  and he,, is 
the constant external field. 

For the random graph model, J,] is long ranged with probability distribution given 
by 

9 ( J y )  = (1 - C I N ) G ( J ~ , ) + ( c l N ) P ( J ? , )  (2.2) 
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where N is the total number of spins and c is the average number of neighbours which 
is of order 1; i.e. average finite connectivity. P ( J y )  is the probability distribution of 
the surviving bonds. The SK model can be recovered with c + N and proper scaling 
of the J,]. Mean-field theory of this model is believed to be exact because of the local 
tree-like structure of the random lattice. (Small loops are rare and  frustration comes 
mainly from loops of size O ( N ) . )  

Viana and  Bray [ 5 ]  showed that, using the replica method, the free energy per spin 
is given by 

p f { q }  = lim - (y q', +: 

x = Phext 

1 a1 a +; c q & y + .  . .) -L In Tr exp(X) 
n - a n  a < P  a < P c Y  n 

(2.3) 
S" + a ,  c qaSa + a2 c qa,SRp +. . . 

a a a ' P  

where uk = c J d J P ( J )  t anhk(pJ )  and a, p, y, . . . are replica indices. 
The qa,  qa,, qaPy, etc take values that minimise$ The set of infinite-order parameters 

q makes this type of short-ranged spin-glass problem difficult; however, near the 
transition temperatures one can neglect all other parameters but those with a few 
indices. The model then shows a similar structure to that of the SK model which has 
only qa and qaP, with the correspondence 

a2 = P : K  near a2 = 1. (2.4) 
The Almeida-Thouless (AT) instability line, below which the replica symmetric 

solution is unstable, is given near transition by [ 5 ]  

2.2. The Bethe lattice 

The Bethe lattice is a tree-like structure in which every site is connected to a finite 
fixed number of neighbours. The lattice is constructed as follows. One starts with a 
central site 0; then c sites are connected to 0 to form the first level. A further level is 
built by joining c - 1 new sites to every site on  the outermost level. Continuing this 
process, one constructs a graph with n levels. This graph is called a Cayley tree. 

Figure 1. Cayley tree with three levels and c = 3. 
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Figure 1 shows a Cayley tree with three levels. This graph has no closed loops and if 
one ignores the boundary sites, this graph is a regular graph on which every site has 
the same coordination number c. The Bethe lattice is the interior portion of a Cayley 
tree with n + m ,  i.e. only sites deep within the graph and very far away from the 
boundary are included. 

As mentioned in the introduction, the model has been studied analytically [9-131 
and the existence of the spin-glass phase was shown. The tree-like structure allows 
one to write down recursion relations expressing properties of the nth level in terms 
of those of the ( n  + 1)th level. Frustration is introduced by the effect of the boundary 
conditions. Ideally, the bulk properties of the Bethe lattice can be explored by 
considering a Cayley tree with a very large number of levels, say r z , ,  and one only 
looks at  the thermal ensemble of the sites in the interior portion of the first n2 levels. 
Then the limit n,  + 00 is taken before n, + E. However, in practical simulations, this 
is not easy to achieve because the number of sites on the nth level is 

c [ c -  l I n - 1  (2.6) 

which grows exponentially as n. Hence it is not economical and not affordable to 
discard a large number of the outermost layers from the boundary. 

In a short-ranged spin model on a regular lattice, boundary conditions can be used 
to project one or  more states out of several stable thermodynamic states which coexist 
in the ordered state. In the case of a spin-glass model on a Bethe lattice, boundary 
conditions are also necessary to introduce frustration into the model. It is possible 
that some boundary conditions will accommodate only one thermodynamic state as 
claimed by Carlson et a1 [12] for uncorrelated boundary conditions, whereas other 
boundary conditions will accommodate many thermodynamic states, as given by the 
Mottishaw solution [ 131. 

To check this possibility we considered two types of boundary conditions on a 
finite Cayley tree: (i) fixed boundary conditions which belong to the ‘uncorrelated’ 
type and (ii) closed boundary conditions (we actually closed the tree) which belong 
to the class of correlated boundary conditions. In order to obtain results which are 
relevent for the Bethe lattice (i.e. the interior of a very large Cayley tree) we discarded, 
when performing thermal averages, the boundary layer and one extra layer for both 
boundary conditions. The number of sites thus taken in calculating the thermal averages 
are about 25% (for c = 3) of the total number of sites of the Cayley tree. The more 
layers discarded the better the approximation to the Bethe lattice but the fewer the 
number of spins remaining for the thermal averages. 

In principle it is possible to consider the finite Cayley tree without discarding the 
outside layers provided one imposes temperature-dependent boundary conditions that 
emulate the effect of the infinite tree on the internal finite part. But this is very difficult 
to achieve in practice since one has to know a priori the analytic solution for the 
effective fields in the Bethe lattice which is not available for the case of correlated 
boundary conditions. 

We should emphasise here that even for the infinite Bethe lattice one has to specify 
the boundary conditions. This is because the properties near the centre may depend 
on boundary conditions very far away. Thus when taking the thermodynamic limit 
one has still to specify the boundary conditions on the circumference of the tree. This 
point becomes clear in the analytic solution of the recursion relations. One looks for 
fixed-point solutions of these recursion relations, thus imposing shell independence, 
which corresponds to the behaviour in the interior of an  infinite tree. Nevertheless, 
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some fixed-point solutions may be unstable thermodynamically, and it is the boundary 
conditions on the infinite tree that determine which solutions are acceptable, and  which 
are incompatible with the boundary conditions. 

2.3. The overlap function P ( q )  

The question of interest is whether the many-pure-state structure of the SK model 
remains true for the present finite-connectivity models. It was shown that near transition 
the random lattice is qualitatively the same as the S K  model and  hence the many-valley 
phase space structure should be true at least just below transition. 

Following the treatment of the S K  model, one can define the overlap between 
different valleys 1 and 1' by 

q / I '  = N I  1 m i m i  I I' 
z=1 

( 2 . 7 )  

where mi is the magnetisation of site i in the state 1. The probability distribution for 
an  overlap q is given by 

where P, is the weight in state 1. In the SK model P ( q )  is related to the Parisi order 
parameter function q ( x )  via [17] 

P ( q )  = dx(q ) /dq  (2.9) 
where x ( q )  is the inverse function of q ( x ) .  

In the present model, in which there are infinitely many order parameters qa,  qap, 
qapy. .  . , one does not know how to construct a similar quantity q ( x )  as in the S K  

model. However, the overlap probability distribution P ( q )  is still well defined in terms 
of the many-states phase space structure. For a finite number of states, P ( q )  is 
characterised by a sum of a finite number of 6 functions. On the other hand, a 
continuous part in P (  q )  usually suggests the existence of many states in phase space. 
(There are pathological cases [2] for which this correspondence may not hold.) 

In actual simulation with finite-size systems, one can define 

(2.10) 

where S:" and are two identical but independent spin systems which have the 
same set of couplings J u .  The subscript in ( )th denotes the thermal average (which 
amounts to a time average in a Monte Carlo simulation), while ( denotes the quench 
average of the Ju configurations. It can be shown that [18] 

lim P N ( q )  = P ( q ) .  (2.11) 
N-OZ 

These two independent sets of spins are simulated for a time to until thermal equilibrium 
is reached. One has to make sure that to is large enough for each size. Then the 
thermal averages, which are time averages for t >  to in simulation, are taken. The 
above procedure is repeated for many other sets of realisations of the JI,. Finally the 
quench averages of the J are performed. In the S K  model, P ( q )  is shown [19] to be 
non-self-averaging; thus the average in Jij is essential and  must be performed explicitly. 
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3. Results 

3.1. Random graph 

We consider the case of the J = il spin glass, i.e. 

P ( J b )  = +(S(J j j  + 1 )  + S ( J ,  - 1 ) ) .  

The spin-glass transition temperature is given by [ 51 

T, = (tanh-’( l/&))-’ for he,,  = 0. 

(3 .1)  

(3 .2)  

Only the case of c = 3 is considered for the results of the simulations. The sizes of the 
systems range from N = 16 to N = 100. The results for large N were obtained from 
the Cray/XMP48. 

To avoid the possibility of being trapped in the local minima in phase space at 
low temperatures, we made use of the simulated annealing technique in the simulations. 
The systems are initially prepared and simulated for equilibration at some high 
temperature (above T,) and thermal samples are taken. Then the temperature is lowered 
and the above procedure is repeated. The temperature of the systems is then gradually 
reduced to the desired low temperature. The cooling rate should not be too rapid to 
avoid being trapped in the local minima. The equilibration time should be longer near 
the freezing temperature and more thermal samples should be taken at low temperatures. 
These in turn depend on the size of the system. The typical equilibration times range 
from 3000 to 12 000 steps and the number of thermal samples taken ranges from 300 
to 1000 depending on the size of the system. Then the whole process above is repeated 
for a different J ,  configuration. The typical number of J ,  configurations ranges from 
50 to 200 and the quenched average is then taken. 

3.1.1. Critical temperature and susceptibility. In the spin-glass context, a continuous 
transition occurs when the susceptibility defined as 

xSG = (1,”) CCsis,)?d, (3.3) , 
diverges. It is easy to show that 

X S G = N  1 q Z p N ( q )  dq. (3.4) 

Figure 2 shows a plot of ,y against N for various temperatures. For T > T,, ,y approaches 
a constant as N increases, while for T < T,, ,y seems to diverge as N increases. From 
(3 .2) ,  T, = 1.52 for c = 3 which is consistent with the value suggested from the plot. 

3.1.2. Lack of self-averageness. The distribution P ( q )  is not self-averaging [ 191 in the 
SK model, and it is believed that this non-self-averageness is due to the existence of 
many degnerate states which contribute to the Gibbs average. A quantity that measures 
the lack of self-averageness is 

and self-averageness is characterised by 

lim Aq+O. 
N-03 
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Figure 2. Plot of x against log N at T =  1.6 (crosses), 1.4 (plus signs), 1.2 (squares), 1.0 
(circles) and 0.8 (triangles). 

Figure 3 is a plot of A q  against N for various temperatures and values of h,,,. The 
points above the AT line do show the trend that A q  -+ 0 as N + CO while those below 
suggest A q  +. constant as N -+ CO. 

3.1.3. Near T,. From the argument in 0 2, it is suggested that for u 2 d  1, the present 
model should have the same RSB as the SK model with the correspondence given by 
(2.4). One would like to see this in actual simulations. We choose a2 = 1.096 which 
corresponds to PSK = 1.047. We simulated the SK model with Gaussian J ,  at this 
temperature and compared it with the random lattice with a2 = 1.096. Figure 4 shows 
the P( q )  for the two cases; they have almost identical P( q ) .  Since P( q )  is related to 
q ( x )  via (2.9), this confirms that near and below the spin-glass transition, the random 
lattice shows the same fashion of RSB effect as the SK model. 

Figure 3. Plot of A q  against log N. Above the AT line, he , ,  = 1.5 and T =  1.4245 (circles); 
below the AT line, he,,  = 0, T = 0.8 (triangles) and T = 1.0 (squares). 
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9 

Figure 4. P ( q )  for the SK model at p = 1.047 (triangles) and for the random lattice with 
c = 3 at a2 = 1.096 (crosses). N = 64 and he,, = 0 in both cases. 

3.1.4. Above the AT line. We choose a2 = 1.1 (i.e. T = 1.4245) which is close to and 
below the transition. From ( 2 . 5 ) ,  the external field on the AT line at this temperature 
is about 2 . 2 ~  so we choose hex,= 1 . 5  which is well above the AT line. Figure 5 
shows the distribution function of the overlap for various sizes. P.%$( q )  peaks at q - 0.5 
and gets sharper as N increases. From (2.8), if there is only one single pure state, 
then P ( q )  is a 8 function. However in a finite system of size N, P,(q) should be a 
Gaussian function of width proportional to N-”2. Figure 6 is a plot of the standard 
deviation of P,(q) against N-’”; it shows a straight line passing through the origin 
and this confirms that P N ( q )  is a 6 function as N + m .  

3.1.5. Below the AT line. We take he,, = 0 and  T = 0.8 which is well below the AT line. 
For hex, = 0, time-reversal symmetry is preserved and P( q )  is an  even function of q. 
Thus only the portion with q > 0 will be shown for the P ( q )  curves. Figure 7 displays 

3 
4 

Figure 5. P ( q )  above the AT line with he,, = 1.5 and T =  1.4245 for N = 16 (circles), 32 
(crosses), 64 (squares) and 100 (triangles). . 
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Figure 6. 
is above the AT line. 

Standard deviation of P ,  (9) against N " *  at he, ,  = 1.5 and T =  1.4245 which 

Figure 7. P ( q )  with h,,,=O at T=0.8 for N = 16 (circles), 32 (crosses), 64 (squares) and 
100 (triangles). 

the results of P ( q )  for various system sizes N. In addition to the peaks at large q, the 
distribution functions look much broadened. P (  q )  has a tail down to q - 0 and this 
effect is independent of N. This means that there is finite probability of having states 
with overlaps close to zero. Furthermore, the shape of the p N ( q )  cannot be fitted to 
a Gaussian function for finite N and the possibility that P ( q )  is a S function is ruled 
out. Since a single pure state implies P( q )  is a single 6 function, and in this case P (  q )  
is certainly not composed of a finite number of S functions, thus there should be more 
than one pure state. Hence the many-pure-state (possibly infinite) phase space structure 
is strongly suggested from our results below the AT line. 

The peak in p N ( q )  gets narrower as N increases, especially on the high-q side 
suggesting that P (  q )  is zero for q greater than some qmax as N + CO. This suggests that 
P ( q )  might be of the form 

(3.7) P ( q )  = C ( q )  +A(S(q - q m a x )  + S ( q  + q m a x ) )  
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where C ( q )  = C ( - q )  is a continuous function for the tail of the distribution and 
C (  q )  = 0 for q > / qmax /  and A is some quantity which is independent of q and normalises 

One can extrapolate the value of qmax for N + a: from figure 7 ;  we get q,,, - 0.59. 
P ( q ) .  

It is interesting to compare with the result of the approximate formula [20]  

which correctly gives the first three terms in the expansion about T,. With T,= 1.52 
in this case (3.8) gives qmax = 0.59 which agrees very well with the result from simula- 
tions. 

The form of P ( q )  suggested in (3.7) is qualitatively the same as for the S K  model 
below the AT line. However, because of the many order parameters at low temperatures 
in the present model, the scheme of replica symmetry breaking is much more compli- 
cated and  not known. A relation of the same type as (2.9) in the SK model is not 
known for this model which renders further quantitative analysis difficult. 

3.1.6. At low temperatures. We also performed simulations for temperatures much 
below T,. Figure 8 is the result for P ( q )  for N = 64 at various temperatures, all of 
which show a long tail extending to q = 0 with a finite weight. Even though we cannot 
go to too low a temperature, it seems that the many-state picture persists not only just 
below T,, but even down to low temperatures. 

0 

Figure 8. P ( q )  with N = 64 and he, ,  = 0 at T = 0.8 (squares), 0.6 (crosses) and 0.5 (circles). 

3.2. Bethe lattice 

We simulate a spin glass on a Cayley tree with two different boundary conditions and 
obtain the distribution of the overlap function P ( q ) .  Here we also study the case with 
c = 3 .  

3.2.1. Fixed boundary condition. The boundary sites are fixed arbitrarily in an  uncorre- 
lated way and  are not allowed to fluctuate thermally. This is equivalent to fixing the 
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boundary conditions in an uncorrelated manner. To try to mimic the Bethe lattice as 
best as we can, we discard the boundary and one layer in from the boundary in taking 
the thermal ensemble. The number N quoted in the figure captions is the number of 
sites in the interior which is only about 25% of the total number of sites of the Cayley 
tree under consideration. The P ( q )  at a low temperature below transition for various 
sizes of the Cayley tree is shown in figure 9. As the size of the lattice increases, P ( q )  
becomes sharper and an approach to a 6 function is suggested by the figure. The 
skewness of the peak is probably due to the fact that too few layers are discarded from 
the boundary. The single 6 function of P ( q )  supports the picture of a single-state 
phase space and hence the replica symmetric solution is the correct solution. This 
agrees with the analytic study in [12]. 

3.2.2. Closed boundary condition. In this case correlations between different branches 
are put in by hand by folding up the boundary sites together. Figure 10 illustrates 
how this is done. Half of the sites on the boundary are gone. All sites are allowed to 
fluctuate thermally. In taking the thermal ensemble, sites on the boundary and one 
internal layer are discarded. Figure 11 shows the P( q )  for various temperatures. At 

4 

Figure 9. P ( q )  with fixed boundary condition at T = 0.8 for N = 46 (circles), 94 (crosses) 
and 190 (squares). 

Figure 10. Cayley tree with two levels. To close the tree, site 7 is identified as site 4, 8 as 
5 and 9 as 6. 
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Figure I t .  P ( q )  with closed boundary condition for N = 94 at T = 1.0 (triangles), 0.8 (plus 
signs) and 0.6 (crosses). 

high temperature, P ( q )  peaks at q = 0, as the temperature is lowered P ( q )  becomes 
rather flat and  has a slight peak at a large value of q. Figure 12 shows P ( q )  at low 
temperature for various sizes. P ( q )  is non-trivial at low temperature; it has a non-zero 
tail extended to q = 0 and  this tail persists for all sizes. This reminds one of the feature 
of the many-state phase space structure as in the spin-glass phase of the SK model. 
Hence, it seems to suggest the RSB picture when correlations between different branches 
are introduced. It is clear that the boundary condition has a strong effect on the 
distribution of the overlap and hence on replica symmetry breaking. 

It was shown [13] that RSB occurs at least near and  below the transition and our  
results suggest that with correlated boundary conditions, P ( q )  seems to indicate RSB. 
Also, for uncorrelated boundary conditions, P( q )  suggests a replica symmetric solution 
[12]. These results are of course subject to the limitations of our simulation, i.e. 
finite-size effects and the fact that only two layers have been discarded. 

2 

- 
e- 
h 

1 

0 0 2  0 4  0 6  0 6  
4 

3 

Figure 12. P ( q )  with closed boundary condition at T = 0.6 for N = 94 (crosses) and 190 
(squares). 
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4. Conclusion 

We simulated the spin-glass model on a random lattice with a finite average number 
of neighbours. The spin-glass transition is observed. The analytic results near T, are 
confirmed, RSB is quantitatively the same as for the SK model. Above the AT line, P (  q )  
is self-averaging and is a single S function which supports the single-pure-state picture. 
Below the AT line, P ( q )  is non-trivial and non-self-averaging which resembles the 
many-pure-state picture as in the spin-glass phase of the SK model. This qualitative 
resemblance seems to hold down to low temperatures. For the Bethe lattice, with fixed 
boundary condition, P ( q )  appears to converge onto a 6 function even at low tem- 
peratures and hence suggests a replica symmetric solution. On the other hand, with 
the closed boundary condition, correlations between different branches being enforced, 
a non-trivial P ( q )  with a non-zero weight extending to q = 0 is obtained at low 
temperatures which roughly has the same qualitative picture as the RSB case of the SK 

model. 
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